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Abstract

In Part I of this paper a noise theory is given for a temperature limited magnetron,

valid for sufficiently low current densities, from which one can calculate the shot noise

produced by such a tube in terms of the magnetron parameters and of the orbit of an

individual electron. This theoretical noise output is compared with that actually pro-

duced by an experimental c-w magnetron type QK61 and two important differences are

noted. The observed noise is as much as 30 db above the theoretical shot noise under

certain conditions, while the observed rate of change of noise power with plate voltage

is many times greater than that predicted for the theoretical shot noise. A general

discussion of the possible origins of this excess noise is given and a theory to explain it

is given in Part II of this paper, Technical Reports Nos. 117 and 118.
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A NOISE THEORY FOR THE TEMPERATURE LIMITED

LOW CURRENT DENSITY MAGNETRON

Introduction

Since the discovery of the resonant anode magnetron, at the beginning of World

War II, a great deal of time and energy has been devoted to the design and theory of

such tubes for use as oscillators in the centimeter waveband. Despite this,

there are still a number of striking but unexplained anomalies in the behavior of the

non-oscillating magnetron operated with constant plate potential and magnetic field.

The most significant of these was reported by E. G. Linder (1) who obtained experi-

mental curves showing the variation of plate current with plate voltage and magnetic

field in a single anode magnetron. The rate of decrease of anode current with increasing

magnetic field differed by many orders of magnitude from that predicted by theory and
2 3

corresponded to initial electron energies of between 10 and 10 electron volts. If this

interpretation were taken literally it would imply cathode temperatures of 106 to 107. C.

Only less extraordinary were some measurements, reported by F. F. Rieke (2),

on the noise properties of non-oscillating magnetrons operated with fixed plate potential.

He concluded that, with typical values of magnetic field, the fluctuation noise power pro-

duced in the magnetron load was more than 40 db in excess of that attributable to shot

noise alone.

In the first part of this paper we consider only the second of these two phenomena.

After a general discussion of the possible origins of excess noise in a tube, a quantitative

analysis is given for the shot noise power produced by a temperature limited magnetron.

Dy sLnoL IIuoie poUWer Wt mean tMe o1u.ie OULpuL

power of a tube calculated on the assumption

that interaction between the individual elec-

trons of the space charge can be ignored as

far as the fluctuations are concerned and that

this interaction only affects the steady state

conditions. A comparison with experiment

shows that this shot noise is about 30 db

less than that observed under certain condi-

tions. This discrepancy is less than that

observed by Rieke but is still a very large

quantity. The experimental results given in

this paper were obtained with a cylindrical

Fig. 1 16-slot cylindrical magnetron 16-slot magnetron,details of which are shown

rc = 1.75 mm in Fig. 1.

0 r = 2.85 mm In Part II of this paper (Technical Reports
a

d = 0.30 mm No. 117 and 118) an attempt is made to develop

h, axial length = 1.0 cm. a theory to explain this excess noise and a
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tentative explanation is also given for the excess plate current observed by Linder.

Reasonable agreement is obtained with the experimental evidence available to date but

a considerable amount of further data must be obtained before the basic hypotheses of

this theory can be regarded as established.

I. CAMPBELL'S THEOREM AND NOISE REPRESENTATIONS

A. Noise Representations. In the past, there has been a great deal of controversy

about the correct theoretical approach to the problems of random fluctuations; the chief

point of dispute is the validity of the Fourier series and Fourier integral representa-

tions of noise currents which have been employed by the majority of workers in this field.

The most detailed attack on the Fourier representation was delivered by N.R. Campbell

and J. V. Francis (5), who suggested that rigor can only be obtained by confining atten-

tion to the fluctuations of the instrument which is being used to measure the noise cur-

rents, the so-called "shot-noise" representation. It is now universally recognized,

however, that the objections voiced by Campbell to the Fourier representation can be

overcome and that a perfectly rigorous analysis based thereon can be set up (6). In

fact the two representations are, mathematically, fully equivalent and either one can be

used as the basis for a complete theory (7).

However, when we come to analyze the fluctuations that exist in a concrete physical

problem, it may well be that one representation has appreciable advantages over the

other from the point of view of physical understanding of the phenomenon. Thus the

Fourier representation is peculiarly well adapted for finding the fluctuations of an

assembly in thermal equilibrium with its surroundings, while the " shot-effect" repre-

sentation is often the better when the dynamical trajectory of every particle can be

calculated.

In what follows we shall feel free to use either representation but the majority of

our analysis is based upon the shot representation and Campbell's theorem (8). A full

discussion of the derivation of this theorem, and of its use in analyzing the fluctuating

currents in conventional amplifier tubes is given in the paper (5) already referred to.

B. Campbell's Theorem. The term noise current, as used in this report, is

applied to those tube current fluctuating components which arise because of the random

emission from the cathode of the electrons that compose the current. The output noise

power of a tube, which is the quantity experimentally measured, is proportional to the

mean square value of these fluctuations. The basic theorem of tube noise, which is

Campbell' s theorem, enables us to calculate this noise power.

Suppose that the emission of an electron charge, e, from the cathode at time t = tk

produces an effect of ef(t - tk) on a measuring instrument in the output circuit. This

measuring instrument might be an ammeter in the tube anode-cathode circuit or an

ammeter in the output of an amplifier connected to the tube. If the measuring instrument
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be such that the effect of the various electrons add linearly, then the total effect at

time t due to all the electrons is

I(t) = e f(t-tk) (1)

k=-k

Then Campbell' s theorem states that the average value of I(t) is
00

I(t) = Xe f(t) dt (2)

and the mean square average of the fluctuation about this value is

[I(t)- I(t) 2 = e2 f2(t) dt (3)

where X dt is the probability that an electron be emitted in time dt. We see that X is the

average number of electrons emitted per second, while X e is equal to I the average

cathode current. As it stands, Campbell's theorem is applicable to the case where

there are initial events of one kind only, that is to say, to the case where all electrons

produce the same effect and it relates the mean square fluctuations in the reading of

the measuring instrument to the effect, on the instrument, of the emission of unit charge

at time t = 0.

A considerable number of extensions of various kinds have been made to Campbell's

theorem so that it can be applied to cases not covered by the restrictions outlined above.

In this paper we shall need to apply Campbell's theorem to the case when there are an

infinite number of distinct and independent primary events.

Let a, .. . y be a number of parameters each capable of assuming a continuum of

values. Let X(a, ... .y) da d ... dy be the probability that an event be initiated in time

dt which produces an effect e f(t) on some measuring instrument. Then
oP...¥

2 P2 (Y20

V (t) = | | *... e X(a, ... y) da dp...dy f(t)a, . dt (4)

1 1 l A

and

IV(t)-V(t)] = . j j e2(a P...y) da dP...dy, f2 (t) dt

(5)

The proof of this extension to the continuous case presents no difficulties if all the

integrals can be defined in the sense of Riemann, and are uniformly continuous. This

will indeed be the case in every application that we shall make of this theorem.

In the case of the magnetron the effect of an electron emitted from the cathode depends
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upon its initial normal and tangential velocities, which are distributed according to a

Maxwell-Boltzmann law, and upon the angular coordinate of the point of emission. To

find the total noise fluctuations it is necessary to average these three parameters.

C. Campbell's Theorem and Parseval's Theorem. Campbell's theorem, so

stated above, deals solely with events in the time domain and, in any direct experimental

verification, it would therefore be necessary to measure the transient response of the

measuring instrument to a single event. This, in practice, is usually very difficult if

not impossible. However, we shall show, that to find the mean square fluctuation of

the measuring instrument, it is sufficient to know the absolute magnitude of the response

of the measuring instrument to a signal of constant amplitude and constant but arbitrary

frequency; a much more easily measurable property. This equivalence can easily be

established as a consequence of Parseval's theorem for Fourier integrals (9). This

theorem can be stated as follows:

Let F(iw) be the Fourier transform of the L-2 integrable function of f(t) so that

F(iw) = f(t) exp(- iwt) dt
-00

f(t) = 2 f F(iw) exp (iwt) dw (6)

-00

then

f(t) dt= I[F 2 (ij) d d (7)

If we introduce the frequency v = w/2r in place of the angular frequency w and if we

remember that

I F(iw) = F(iw) F*(i) = F*(-iw) F(-iw)= IF (-i) 1 (8)

we can write this result in the alternative form

f2 (t) dt = 2 IF(v)I dv . (9)
co 0

With the aid of this identity we can write Campbell' s theorem in the form

[V(t)- V(t)J2 = 2e2 X(a) da IF 2(v)ldv (10)

where

Fa(v) = f(t) exp(-2rivt) dt
(0

-4-



and where, for simplicity, we have assumed that there is only one parameter distin-

guishing the fundamental events.

It should be pointed out that the use of Campbell' s theorem in this equivalent form

does not mean that we have abandoned the use of a shot effect representation in favor

of a Fourier representation. Such a step would require us to provide a Fourier analysis

of the fluctuating readings of the measuring instrument, while we have simply introduced

the Fourier analysis of the response of the measuring instrument to an event at time

t = 0.

Another advantage of the alternative form of Campbell' s theorem, is that it readily

lends itself to the erection of equivalent noise representations which are very useful in

comparing the noise properties of various tubes.

II. GENERAL DISCUSSION ON POSSIBLE ORIGINS OF NOISE

A.' Shot Effect, Secondary Emission and Gas Scattering. If one turns to a book or

journal article devoted to the subject of noise in tubes one is likely to find reference

there to many kinds of noise. Shot noise, partition noise, induced grid noise being

three of the more common. These distinctions should not bind us to the fact

that the basic origin of the fluctuations lies simply in the random occurrence of the

fundamental event, which is the emission of the electron from the cathode. If electrons

were emitted with perfect regularity from the cathode there would be no shot noise, no

partition noise and no induced grid noise, except at frequencies commensurable with the

inverse of the time interval between successive electrons. There are of course other

possible origins of noise. Thus if the electrons emitted from the cathode were permitted

to fall upon a secondary emitting surface, noise currents would arise even if the initial

electron flow were perfectly regular, because a given electron would produce a randomly

distributed number of secondaries. Similarly, if the cathode emitted electron beam

were to interact with a molecular gas in thermal equilibrium, the individual electrons

would be randomly scattered by the molecules,and the current contained in a fixed solid

angle would exhibit random fluctuations.

In the magnetron case, however, the initial current is randomly emitted, secondary

emission is unimportant and the effects of gas scattering will be small (see page 11),

as this can neither increase nor diminish the randomness of the initial stream.

Accordingly, when looking for an explanation of the noise properties of a tube we do

not seek for a new origin of noise but consider instead the effect produced by an indi-

vidual electron and the ways by which this can be modified in a particular case.

In the magnetron the chief problem is the enormous noise power produced. We shall

therefore give a brief survey of the possible causes of excess noise in tubes with

particular reference to those which are likely to be important in the magnetron.

Before doing this it might be helpful to look a little more closely at Campbell's theorem

which is to be used as a basis for this discussion.
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B. Campbell's Theorem and its Verification. In the simplest case, when there

are events of only one kind *, Campbell's theorem, as given in Eq. 3, states that the

mean square fluctuations of the measuring instrument are given by

IV(t)- V(t = e X f(t) dt = e Ic f(t) dt(11)

where V(t) is the reading of the measuring instrument at time t, Ic is the average emitted

current and f(t) is the effect produced on the measuring instrument by unit charge emitted

at time t = 0.

As stated in Section I, the measuring instrument might well be an ammeter or volt-

meter connected in the output circuit of an amplifier following the tube. We can imagine

that this output current or voltage is displayed on the screen of a cathode ray oscillograph.

Ideally it would be possible to take a continuous series of photographs of the screen and

so obtain a continuous record of the output of the amplifier. From this we could obtain

the mean square fluctuations of the output and, if we wished, the higher moments of the

output reading: the correlation function and so forth. If we could measure or calculate

the response of the cathode ray tube to the emission of unit charge from the cathode of

the original tube it would be possible, in this manner, to verify Campbell's theorem

from the measured noise output. This last is, however, often very difficult to do. In

addition practical noise measurements are not performed in this way when only the mean

square fluctuations are of interest. Instead the output of the amplifier is connected to

a square law detector with a long time constant in the video output. The average or

steady state value of this output is then proportional to the mean square voltage fluctua-

tions across the detector.

Now that we are no longer measuring the time distribution of the fluctuations it is

much better to go over to the alternative form of Campbell's theorem as given in Eq. 10

which states, in the present simple case, that

[V(t)-V(t)]2 = Ze Ic j F2 (v)ldv (12)

where
co

F(v) = f(t) exp (-2wrivt) dt (13)
--0

v is the frequency and F(v) is the Fourier transform of f(t).

Now in general it is the mean square fluctuating noise power produced by the tube

in which we are interested rather than in the output noise of the amplifier. Accordingly

* This applies to the case where the effect produced by an electron does not depend
appreciably on its initial velocity or on the coordinates of the point on the cathode
from which it is emitted.
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let I(t) be the current flowing in the load resistor R in the tube anode circuit. Then

[I(t)-I(t)]2 R

is the noise power delivered to the load. If g(t) is the current produced in the load by

emission of a single electron at time t = 0 and if G(v) is the Fourier transform of g(t)

we have, e.g.

[I(t)-I(t)]2 R = 2e I Rf G 2 (v)dv = R d iZ(v) (14)

where

d i(v) = e I G(v)ldv . (15)

R d i (v) is the noise power dissipated in the load in bandwidth dv. Now by definition,

A 2 (v) d i 2 (v) = I F2 (v)l dv (16)

where A(v) is the amplitude response of the amplifier.

In the most common practical case the amplifier is designed so that A(v) is approxi-

mately constant and equal to A( v0 ) over a band

VO < V < V + Av

and is approximately zero outside this band. Av is a bandwidth so small that the varia-

tion of d i2 (v) in this range is negligible. In this special but important case, the mean

square fluctuations at the output of the amplifier are given by

[V(t)-V(ti] 2 = Ze Ic IF(v)dv

= e Ic IF2 (V)IAV

while
7- F (v) dvdi (v) = F(v) Av v e Ic

A (vo) Av

[V(t)i- (t)] dv
AZ(v) (17)

All the quantities on the right hand side of Eq. 17 are measurable so that R d i2(v) =

P(Vo) dv can be found. This is the quantity in which we are primarily concerned in this

paper.

C. Possible Causes of Excess Noise in Tubes. From Eq. 15 we see that the out-

put noise power of the tube in bandwidth dv is given by

P(vo)dv = R d i (v) = e Ic RIG 2 (v)I dv

-7-



If we neglect the effect of increasing R there are just three ways by which this

quantity can be increased: 1. by increasing e, 2. by increasing Ic, 3. by increasing

IG 2 (v)I . The most important of these alternatives is the last but we shall consider

them briefly in order before dwelling at some length on 3.

1. An actual increase in e could only be achieved by using n multipli-ionized

atoms in place of electrons as the fundamental units of charge, but an effective increase

in e can be obtained in an electron multiplier. Thus if each electron hitting the secondary

emitting surface produces three secondaries, the electronic charge is effectively tripled.

A similar effect can also be obtained in the presence of a space charge produced potential

minimum, as discussed in Section IV.

2. When comparing the noisiness" of two tubes it is quite customary to com-

pare their noise power outputs when they are drawing the same output currents. It

should be remembered however that the I of Eq. 12 represent the currents leaving the

cathode so that, if this be large compared with the plate current, the tube may appear

far noisier than one, like the temperature limited diode, where all the cathode current

reaches the plate. This is particularly true in the magnetron case, where the plate cur-

rent is, ideally, vanishingly small, and the circulating current that produces the fluc-

tuating currents in the magnetron load is often very large.

3. In most cases, however, the different noise behavior of different tubes is

traceable to the different effects produced by a single event rather than to either of

these two causes. It is obviously impossible to discuss this question in general terms

so we shall, instead, consider a number of special cases chosen to throw light on the

magnetron itself.

D. Internal Noise Amplification. One obvious mechanism for obtaining increased

noise is to include in the tube an amplifier with unit gain at d-c but large gain over an

arbitrary frequency band. A simple illustration is afforded by a temperature limited

diode followed by an a-c coupled amplifier of high gain. The fluctuations in the output

current of the last tube of the amplifier will then be enormously greater than the fluctua-

tions attributable to the shot noise of this tube at least for frequencies in the pass-band

of the amplifier. This is of course an exceptionally artificial example and a number of

more realistic cases can easily be found. For example there is the phenomenon known

as induced grid noise.

It is found experimentally that the noise output of a triode, with an impedance con-

nected between cathode and grid, increases steadily with frequency. This excess noise

is really part of the shot noise, amplified by the tube itself, its origin being due to the

random emission of electrons from the cathode and to no other source. The effect takes

place as follows. An electron emitted from the cathode at time t = 0 traveling to the plate

will induce a current in the grid cathode circuit. The induced current will produce a

voltage V(t) the form of which will depend upon the nature of the grid impedance. The

induced voltage will react upon the average current flow and produce a current g V(t)

-8-



where g is the transconductance of the tube. The total effect of the emission of an elec-

tron is thus to produce a plate current equal to

ia(t) - ig(t) + gV(t)

The Fourier transform of this function may be written

ia(V) + ig(V) (gZ(v)- 1)

where ig(v) is the Fourier transform of the induced grid current, ia(v) is the Fourier
transform of the plate current when Z(v) is zero, and Z(v) is the grid-cathode impedance

at frequency v.

The fluctuations in the plate current are proportional to

Ia(v) + ig(v) (g Z(v)- 
and can be made arbitrarily large by making Z(v) large, thus giving an effective ampli-

fication of noise.

Exactly the same principle operates in the case of the klystron amplifier where the

noise currents in the electron beam excite fluctuating voltages across the buncher cavity,

which, in turn, react upon the electron beam.

A more striking example is afforded by the traveling wave tube where the interaction

between the space charge and the electromagnetic waves guided by the helix provides

considerable amplification of the initial fluctuation currents, gain as great as 80-100 db

being possible.

Finally, and most interesting of all for our present purposes, is the so-called elec-

tron wave tube developed by A. V. Haeff (10) and his associates at the Naval Research

Laboratory. This tube provides amplification of both signal and noise by the interaction
of two superimposed beams of electrons and the mean velocity of one beam differs from

that in the others. No external resonant or guiding circuits are required and gains of
80-100 db have been reported for this tube also. The problem of nise amplification in
the magnetron space charge is discussed in Part II and it is there shown that a mechanism,

similar to that operating in the electron wave tube, plays an important part in the explana-
tion of the huge excess magnetron noise.

E. Large Noise Without Amplification. In the previous section we discussed tubes
whose increased noise outputs were attributable to internal amplification. Now the
amplification factor is usually itself proportional to the current flowing in the tube so

that the variation of noise power with average current will contain terms proportional
to I and I3a in contrast to the diode where noise power is proportional to I. It is, how-a a a
ever, possible for a tube to have a very much greater noise output than the corresponding

diode even when no internal amplification takes place. To see how this may be so let us
consider once again the temperature limited diode.

The equivalent noise current generator (Eq. 17) for this tube is given by

-9-



i(v) dv = ZeI dv

where I a is the anode or cathode current. This expression is valid for frequencies

small compared with the inverse transit time.

Now in the diode we can take, as the fundamental event, the random storage of a

charge -e in the anode-cathode capacity C, which is the same as storing an energy e/C

in this capacitor. The storage, which can be regarded as instantaneous if we confine

attention to low frequencies, involves an extremely small amount of energy. If C is

10 ~Lf,a typical magnitude, then the energy stored in the capacitor is 1.6 x 10- 14 electron

volt. It should be noted that the quantity of energy thus stored is quite independent of

the kinetic energy of the electron when it reaches the anode. This energy, which is of

the order of 100 ev or 1016 times the stored electromagnetic energy, is entirely

dissipated in heat. However, if even a small portion of this energy could be converted

into electromagnetic energy the possibility of obtaining enormous noise currents,

associated with a small average current, would arise.

An impressive illustration of this possibility is provided by the phenomena known as

Cerenkov radiation. When a high speed electron passes through a dielectric medium in

which c E O/E, the velocity of light propagation in the medium, is less than pc, the veloc-

ity of the electron, then radiation is observed in a direction making an angle

= cosl I ) (19)

with the direction of motion of the electron. The energy radiated in this way, by a high

speed electron, may well amount to several Kev/cm path length. Ideally, with the aid

of mirrors, lenses and impedance matching devices, it would be possible to collect an

appreciable fraction of this energy in a resonant load. If a number of electrons were

fired incoherently through the medium, the mean square fluctuations produced across the

load could be as much' as 1017 times larger than the fluctuations produced in the same

load in the anode circuit of a temperature limited diode drawing the same current.

As a less artificial case, let us consider a cylindrical tube consisting simply of the

anode of a resonant-slot magnetron. Let electrons be injected into the device from a

gun with just sufficient energy to describe circles, concentric with the cylindrical tube,

under the action of a magnetic field parallel to the axis of the cylinder. The rotating

electron will set up electromagnetic fields and, if one of the slots be coupled to an external

load, there will be a continuous flow of energy into this load which will have to come from

the kinetic energy of the electron. As the electron loses energy the radius of its orbit

will continually decrease, until, finally, the electron comes to rest on the axis of the

cylinder. If electrons are fired at random into the cylinder the resulting fluctuations in

the load will again be 1017 times as large as if the load were placed in the anode circuit

of a temperature limited diode, although the frequency spectrum of the output noise in

the former case will not be linear. (Since this example was produced to illustrate a
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general principle we have not attempted to consider such a practical question as how

the electron is to escape hitting the gun on a subsequent revolution. A weak electric

field parallel to the axis of the cylinder would provide a possible mechanism.)

Clearly, this last example is closely related to the case of the magnetron itself.

F. Possible Reasons for Excess Noise in Magnetrons. In the earlier portions of

this section we have suggested that the fundamental origin of noise in magnetrons, as in

other thermionic tubes, is simply the random emission of the individual electrons that

compose the magnetron current, and we have identified three possible reasons

why the magnetron noise should be so large.

1. The circulating current is much larger than the anode current and, in the

magnetron, the effect produced by an electron that approaches close to the anode, but

does not actually reach it, is likely to be as large if not larger than the effect of an

electron which does strike the anode.

2. Owing to the long transit time of an electron in a space-charge limited

magnetron there is the possibility that the effect produced by a single electron will be

larger than if its sole effect was to store its charge in the anode cathode capacity.

3. As we shall show in Part II,interaction between the ingoing and outgoing

streams in a magnetron provides a mechanism whereby considerable noise amplifica-

tion can take place, within the space charge itself, over a wide frequency range.

As we shall see later the second of these causes is not effective in the magnetron as,

under practical operating conditions, the transit time is never long enough. However,

the first and third are important.

The question may well be asked as to whether there are not additional reasons for

the excess magnetron noise.

One possibility, that occasionally has been mooted, is that ions may be contributing

to the noise. (These ions are produced either by back bombardment on the cathode or

from gas molecules present in the interaction space.) Now ions can affect the magnetron

noise in two ways. Firstly by their random production and subsequent motion through

the electrostatic potential minimum in front of the cathode, secondly by Rutherford

scattering, which will alter the trajectory of an electron inside the magnetron. Because

of their much greater mass the velocity of the ions through the electron cloud is very

small compared with the electron velocity and their transit time is correspondingly long.

Accordingly the fluctuations in magnetron current caused by the random production of

ions will have no high frequencies present and hence cannot affect the fluctuating currents

in the load of a non-oscillating magnetron. In the oscillating magnetron, however, things

are different. The tube and space charge impedances are non-linear and the low frequency

noise current due to the ions can beat with the oscillation frequency and spread its spec-

trum over a band. Since there is some reason to believe that the magnetron space charge

is indeed oscillating, even when operated in a cut-off condition, we might expect an addi-

tional service of noise to arise from the presence of ions. However, this effect should
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be noticeable only at frequencies near the oscillating frequency and should be negligible

at frequencies far removed therefrom. The effect of Rutherford scattering is unlikely

to be important for two reasons: the gas pressure in a magnetron is very low; and a

random change in electron trajectory about the mean will, not to the first order, affect

the mean square fluctuations.

Another possible origin of noise lies in the production of one or more secondary

electrons when an ion is formed. This is also likely to be unimportant because of the

low gas pressure.

These arguments against the importance of gas as a source of excess noise are not

conclusive and it is desirable to obtain experimental confirmation by observing the effect,

on the magnetron noise, of altering the gas pressure in the tube.

This discussion virtually exhausts the possibilities for excess noise when we confine

attention to events of one kind. But in a space charge limited tube where a potential

minimum exists in front of the cathode, the effect produced by an electron depends very

much upon its initial velocity. It would be natural to take as the Ic of Eq. 17 the current

that actually crosses the potential minimum. However, in the magnetron it appears that

a considerable portion of the output noise is produced by fluctuations in the emission of

electrons that do not cross the minimum and this fact is responsible for a considerable

part of the excess noise.

This completes the qualitative introductory part of this paper. We shall now pass on

to develop a quantitative analysis of the temperature limited magnetron with low current

density.

III. THE NOISE PROPERTIES OF A TEMPERATURE LIMITED

LOW CURRENT MAGNETRON

A. Introduction. The purpose of this paper is to explain the excess noise of magne-

trons but we have not defined the standard by reference to which we conclude that the

experimentally observed noise is excessive. A number of alternative standards have

been suggested in the past. Some of them were extremely unreasonable. One suggestion

was to compare the magnetron output noise with the noise delivered by a temperature

limited diode, with zero transit time, drawing the same anode current. Purely from

the experimental point of view this is not illogical, although the thermal noise power

developed by the magnetron load is a much more absolute standard. However, it would

be quite absurd to label the difference between the magnetron output and the diode output

noise power, excess noise, since, first, the mechanisms by which noise is produced

in the two tubes are quite different and, second, the plate current in a cut-off magnetron

is itself an anomaly requiring explanation. In this paper we take as the standard, a

temperature limited magnetron where the interaction between individual electrons is com-

pletely neglected. It will then be assumed that the orbit of an electron and the total

circulating current are the same as the corresponding quantities in the magnetron whose

-12-



noise power is being measured. (This noise power may properly be called the shot

noise power.) This choice of a standard is arbitrary but it is probably the most con-

venient for our present purposes. Accordingly we shall derive a theory for the tempera-

ture limited magnetron* which will also be of considerable help as a guide to the solution

of the much more complex space charge limited case.

From Campbell's theorem (see Section I-B), the output noise power of the tempera-

ture limited magnetron can be written down once we have found the voltage v(t) or,

alternatively, the Fourier transform V(iw) of v(t), developed across the magnetron load

by an electron emitted, at time t = 0, from a particular point on the cathode surface

having cylindrical coordinates (rc, 00). The form of v(t) will depend on 00, as well as

on the initial normal and tangential velocities. The latter have very little effect in the

temperature limited case, only the former are important. To find the mean square

fluctuations across the load we must use the form of Campbell's theorem given by Eq. 5

which is appropriate to the case where the set of fundamental events forms a continuum.

By inspection of Eq. 5 we see that this is equivalent to averaging the output noise power

over 0 . In the important special case where the emissivity of the cathode is independent

of 00 the noise power associated with one particular mode of the cathode-anode inter-

action space is independent of that associated with any other mode, a fact which makes

for a considerable simplification.

When an expression has been obtained for the mean square voltage fluctuations across

the load it will be possible to set up an equivalent noise circuit for the magnetron and

hence compare the "noisiness" of the tube with the thermal noise power in the load or,

if we wish, with the noise output of a temperature limited diode.

B. Simplifying Approximations. A certain number of simplifying approximations

will be made in the course of this analysis and will be stated at the stage of the theory

where they are introduced. To give the reader a clear idea of the limitations of the

solution, it seems best to state the more important of them explicitly at this stage,

leaving an explanation of their relevance to the appropriate part of the text. It will be

noted that, in general, the approximations we are making are those customarily empha-

sized in the mathematical theory of the magnetron (2).

1. Two-dimensional analysis. In the majority of theoretical treatments of the

magnetron it is assumed that the tube is infinitely long and that all physical quantities

are constant along lines parallel to the axis of the tube. We shall follow the same pro-

cedure here and, in addition, substitute for the point charge of strength e, a line charge

of strength e/h per unit length, where h is the axial length of the magnetron.

*For the sake of conciseness we shall apply the term "temperature limited", in this
section, to the case where the current density is so low that electron-electron
interaction can be neglected. We shall not assume this limitation in Part II where
we shall consider the temperature limited magnetron operated with high space charge
densities.
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2. Non-relativistic treatment. Throughout this report all relativistic effects

are ignored, which is justified provided eVa << moc where V a is the plate-cathode

potential difference. This implies that we neglect the difference between the advanced

and retarded Coulomb fields, assume the velocity of the electrons very small compared

with that of light, and neglect the effects of the magnetic fields produced by the electrons.

3. Magnetron design and loading. The magnetron discussed in this section has

a cylindrical cathode-anode interaction space and N identical rectangular slots (Fig. 1).

To avoid the introduction of asymmetry we shall assume that the magnetron slots are

all equally loaded by a pure resistive termination. If, as we shall assume, the slots be

tightly coupled, the total power delivered to those N loads is equal to the power delivered

to a single load chosen so that the output circuit has the same bandwidth. We also assume

that the magnetron walls are perfectly conducting and that all the dissipation takes place

in the loads.

4. Narrow slots. The fields in the rectangular slots will be expressed in terms

of orthogonal Cartesian coordinates, while the fields in the anode-cathode interaction

space will be expressed in cylindrical coordinates. However, when matching fields

across the boundary between the two spaces we shall assume the slots to be so narrow

that the x and y field components in the slots may be matched to the r and 0 field com-

ponents respectively in the interaction space.

5. Matching conditions. Maxwell's equations require that both the E and the H

fields be continuous across the mouth of the slots, and that the tangential components of

E be zero at all metal surfaces. This requirement can only be met exactly if an infinite

number of modes be set up, both in the anode-cathode interaction space and in the slots.

At operating frequencies, all but one of the modes in the slot are evanescent, so that

only in this, the lowest mode, can power be transferred to the load. This provides the

justification for the universally adopted matching procedure that we follow in this paper.

In the slot we neglect all the evanescent modes, which, by definition, carry no power.

Then we require that Ee be continuous across the mouth of the slot and that B, the

magnetic field in the interaction space, equal B in the slot at the center of the slot.

C. The Fields Set Up in a Magnetron by an Arbitrarily Moving Line Charge. In

the M.K.S. system of units Maxwell's equations may be written

aB aD
curl E - curl H = p v +

div B = 0 div D = p (20)

together with the additional relations, valid in free space,

D= E E B= A H

where
f = 11o =/c[ 4 rX 1 . (21)
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In the present case p is zero everywhere except for a pole at the position of the line

charge. The boundary conditions require that Et and B n be zero over the anode and

cathode surfaces. Because of the two-dimensional nature of the problem we may take

E = (E r , E, 0)

B= (0, 0, B z) (22)

so that the boundary conditions on B are automatically satisfied.

It will be useful to employ the scalar and vector potentials X, A which satisfy the

equations aA

E B grad - B = curlA - (23)

Now it is well known that the scalar potential of a stationary line charge -(e/h) is

given by

+ e loge r-r' (24)

where r' is the radius vector to the line charge, and r is the radius vector to the point

at which the field is being measured.

If the velocity of the line charge is very small compared with the velocity of light,

we can ignore the difference between local and retarded time, and write the scalar and

vector potentials of a line charge moving in free space

= loge Ir-r I

+e
A = v' log Ir-r'l (25)

where v' = (r', r'V', 0) is the velocity of the line charge. These potentials are the

Green' s functions for the problem. Our task is now to find solutions of the charge-free

Maxwell' s equations, of the form of Eq. 22, regular everywhere within the anode-cathode

interaction space, and in the slots, which, when added to the fields derived from Eq. 25,

satisfy the boundary conditions stated above. We proceed as follows. The magnetron

interior is divided into two regions, the anode-cathode interaction space and the slots.

A general solution of Maxwell's equations for charge-free space is obtained in these

regions as an infinite series of the appropriate orthogonal functions. The fields derived

from the potentials of Eq. 25 are likewise expanded as a series of the orthogonal func-

tions appropriate to the cylindrical interaction space. The boundary conditions, and the

conditions for continuity, are sufficient to determine the unknown coefficients in these

expansions.

Wherever it may be necessary, to avoid confusion, we shall denote the fields in the

Sth slot by the superscript S, the fields in the anode-cathode interaction space by the

superscript A, and the fields derived from the Green's functions of Eqs. 25 by the



superscript G.

We shall eliminate the time explicitly

from Maxwell' s equations by taking their

Fourier transforms. In the remainder

of this section, unless otherwise stated,

all field quantities will be replaced by

their Fourier transforms; formally this
iwt iwtcan be done by writing E e t , B e' t

Fig. 2 Coordinate axes in rectangular anode for E and B and dividing through by e i t .

slot. 1. The charge-free fields in the

slots. The anode slots are assumed to

be rectangular in shape, of width d and length L. It is best to express the fields in

Cartesian coordinates; the y-axis lies in the open face of the slot, and the x-axis along

the center of the slot as shown in Fig. 2. If we ignore all the evanescent modes it can

be shown (2) that the fields in the slot may be written

s s ix iwxHz o xp (- ) + a exp ( c 

5
E 0x

E = H xp- [a exp (_cx] (26)

The a in this equation will be determined by the boundary conditions at the closed end of

the slot, and is independent of s because we have assumed that the slots are symmetri-

cally loaded, as discussed in paragraph 3, page 14. The H are coefficients determined
0

by the boundary conditions at the open end of the slot.

2. The charge-free fields in the anode-cathode interaction space. It can be

shown that the charge-free fields in the anode-cathode interaction space are given by (3)
o 0 0

H A r cos i m O + BA Z wr) sin m mz = m ml c m m2 c
m=o 

EA m A r sinmO A r cos O1
rA = iE mml( c r m Zm2(c) r m

m=o

E + i ml-~os + Zm(7- )s in l (27)

m=o

where

ml c m c ml m c

z 2(r)= J (r)+ z Nm(r) (28)m2 c m c m2mc
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Jm(x) and Nm(x) are the Bessell and Neumann functions of order m respectively; Yml

and Ym2 are real constants determined by the boundary conditions at the cathode;

A and B are real constants determined by the boundary conditions at the anode.m m
3. The fields derived from the potential Green functions. Equation 25 may be

written
2

= -E loge r + rl 2 rr' cos (- 0')
o

A = log 2 + r2 -2rr' cos (O-0') (29)

and the corresponding fields may be derived from Eq. 23. Since we assume that the

velocity of the line charge is very small compared with the velocity of light, we may put

EG =-grad ~G.

In Appendix I of Section III we have obtained the Fourier transforms of these field

quantities and get

G eiwo F(iw) sn(i) 1H (iw) =- mm) si (i) cos my] r > r'
ml r m r mM~~~~csa I r 

E (iw)Z

where
0o

Fmc(iw) = (r )m
0-o

eiw E [ G in m- -mG cosmO

m=l

E= c( sin m ms cos mO
0 m=l r

m00

-e E GC(iw) rm sin mO - rmG (iw) cos mOE rh Mc ms 
m=l

r< r' (30)

r > r'

r <r' (31)

oo

cos mO' exp(--iwt) dt; Gmc(i) 

W

FmS(iw) =

-c

(r') m sin m' exp(-iwt) dt;
Gms(iw) =

G (iw) =i ns-c

m

(l,) sin mO' exp (- it) dt.

(32)

With the aid of Eqs. 26, 27, 30, and 31 we can use the boundary conditions to determine

the various unknowns: From the requirement that the tangential electric field be zero

over the cathode surface, we obtain the equation*

E G A
E G(iw) + E 0 (i) = 0 at r = r

c (33)

*For a discussion of these boundary conditions see page 14. For a definition of the
interpretation of the superscripts on the field quantities see page 15.
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From the requirement that the tangential electric field be zero over the portions of

the anode that lie between the slots, we obtain the equation

EG(iw) + EA(iw)= O (34)

for r = ra and for values of 0 satisfying the inequality

2sw + d << (2s + 1) d (s=0,1, N-1)
-- 2a-r-< O < 2ra a

From the requirement that the tangential electric field be continuous across the mouth

of the slots, we obtain the equation

EG(iw) + E A((i) = E (ic) (35)

for r = r a , and for values of 0 satisfying the inequality

2sir d 2siT d2-s d < 0< 2 + d (s= 0, 1, .. N-1) 
N 2r N 2r

a a

Finally from the requirement that the magnetic field should be continuous across the

center of the slot we obtain

HG(iw) + HA(i) = HS(i ) (36)

for r = ra and for 0 = 2s=r/N (s = 0,1, ... N- 1). In these equations rc is the cathode

radius, ra is the anode radius, and d is the width of the slot, as shown in Fig. 1.

The various field quantities in Eqs. 33 to 36 are given by Eqs. 26, 27, 30 and 31

and between them it is possible to express all the unknown field quantities in terms of

quantities that depend only upon the orbit of the electron. In the present case we are
5

concerned with the fields in the slots which are in turn determined by the quantity H
0

If the necessary algebraic elimination be carried through it can be shown that H is

given by the rather formidable expression

Ho(l+ a): = ei 1 Aml
o ma (37)o 

m2

where

A r a Nm( - Jm( ]
m2 c or

N' (.2)
m c

F (or or

iN(l- ) sin mdr a) c ) 
Z2mr(1 + a) sin Lm( c c r

an ( C)
m c

and
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[Fms~ rm(iw)2msr Fms
N ) m+l

r a

2ms-r- sin ( N)

r
m cMc

L

F (iw)mc
m+lr a

cr
N' ( a)m c

car
N' ( C)m c

ar
N' ( a)

m c
wr

N' ( c)m c

r

r

wr
ar N' (- ) wr

( a) m (C mc wr mc

- Nm c

m- c Gms(i]

r-i

c mei
C

+ m(ca) 

wr Wr 
Nm( ) ( c )

r
Nmn( c C

This complicated result can be much simplified when the inequality

wr 2rrr
a a-a a << 1

c X

is satisfied, which is certainly the case with the magnetron of Fig. 1 where

X -1
, r = 2.85 X 10 3 and T 0.1 ,xl · a

In this case we can use the Laurent series expansions for Jm(x) and Nm(x)

all terms except the first; so that

m

Jm(X) M 2m
N (x) _(m - 1)' 2 m

NmX M IT x'

and neglect

(38)

are valid for m > 1 and x << 1. We now have, on substituting in Eq. 37

cra X Xmc ms
s 0 ei Ms2( -Co |s -ms- m sin (- ---

c r m+l os_ r

11o > ei a rHS= =

m= h(l + iN Ia a1 md0= h(1-) ,o/-- m 1 L±(J--sin
Z · m ( 1- +- - 2 

k smar 2 a

(r,)m [-(r 2 cos
coc 

(39)

mO' exp (--iwt) dt

X (i E sin ' exp (-it) dt .
X m 5(iw = (r1)m L'- ( ~ )jsin mO' exp (-iwt) dt.

Ms~~~~c
(40)

In the magnetron of Fig. 1 (rc/ra) = 1/1.6 and, as the dominant mode is that for which
2m

m=8, it will be possible to neglect (r /ra) in comparison with unity. The sole effect

of the cathode therefore is to provide a screening factor of the form 1 - (rC/r )gm which
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is effectively unity save very near the cathode.

For m < 8, sin (md/2ra);. md/2ra. Accordingly* for m < 8 the expression for Hs

assumes the simplified approximate form

Hs= 
m=o

ei

h(l + a) /2o

.4

2 Fra Xms 2msr Xmc 2ms 
m rLrm+l cos N m+l sin

a aa 

4mlr +a c

(41)

where Xmc and Xms are given by Eq. 40.

Using Eq. 41 and Eq. 26 we see that we have succeeded in determining the electro-

magnetic fields set up in the slot by an arbitrarily moving line charge. We have thus

completed the first part of our task and are now in a position to apply Campbell' s theorem

to determine the mean square fluctuation produced across the output load.

D. Campbell's Theorem for the Temperature Limited Magnetron. As stated in

Section III the effect produced by an electron is virtually independent of the initial thermal

velocity; only the initial angular coordinate is important. Accordingly we must apply

Campbell's theorem in the form applicable to the case where there is a single continuum

of fundamental events as in Eq. 10.

Let X dOdt/2Tr be the probability that an electron be emitted in the time interval dt in

the angular range dO so that, because X is assumed to be independent of 0, X = AIc/e

where A is the total cathode area, and I is the emitted current density in amps/meter .
c

Let Vo(t) be the voltage produced across the output load by an electron emitted at

time t=O with initial angular coordinate in the range 0 < 0 < 0 + dO, and let V0(iwc) be

the Fourier transform of V0 (t) delivered as in Eq. 6. Then Campbell' s theorem, as

stated in Eq. 10, gives us

IV(t) - V(t 2 = 2X do J Iv (iu)I2 dv
T7-

2AIc 2w

e

d Ot2
2w | Vo(in)I dv (42)

We deduce that the average noise power developed, which may be defined as

IV(t) - V(t)l2

R

*This is not always a valid result. It is valid with the particular numerical values
of the experimental tube discussed in this paper (see Fig. 1). Since this tube has
16 slots, m = 8 corresponds to the ir-mode.
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is given by

[V(t)-v(t 2 2AIc 2 0 o dv (43)
R e 27 R

where R is the parallel resistance component at the output load. The power Ps(v)

dissipated in the load in the Sth slot in unit bandwidth is given, accordingly, by

ZAIc o V0 i)I 2 dO
PS(v) dv = e dv (44)

Because of the symmetry assumption, the noise power dissipated in any one load

is equal on the average to the noise power dissipated in any other load. Hence PS(v)

is independent of S, and P(v) the total power dissipated in the loads, in unit bandwidth,

is given by

2NAI o V Iv(iw) z dO
P(v) = N PS(v) = (45)e R 2(

where N is the number of the slots.

p(v) is the quantity that we are primarily concerned to find. As a first step let us

consider the quantity

PO 2 I() = 2R V(iW) V(46)

This can be interpreted as the power dissipated, at angular frequency a, in the load

resistance, by an electron emitted from points (rc0o) on the cathode. Now we have

assumed that no power is dissipated in the walls of the slot so that this power must also

equal the power flowing across the open face of the slot. This power is equal to (1)

Real part of 12 /Es(iw) X H s (iw) dS

where the integration is taken over the open face of the slot, ES(iw) is the Fourier trans-

form of the electric vector in the slot, and H S*(i) is the conjugate complex of the trans-

form of the magnetic vector in the slot. E S (i) and HS(iw) are given by Eq. 26 with x=O.

Hence we have

pS(w) = Re 1 E X H dS)

ver slot face at x=o

= Re dy dz HS 12 (1-)( + a*)

0-d/ 0

hd IHo [H Re (1-a)(l + a*)

2 o
0o
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where HS is given by Eq. 41 for my 8, and more generally by Eq. 39 for m<8.

From Eq. 43 we can see that it is p(w), the average value of p,(w), with which we

are primarily concerned, where

p2S dO hd To ___

S ( ) 2 0° = hd (1-- aa ) (48)pS~w) P ( w )P 2Tr- 2 2rr o
0

and a is independent of 0.

Hs is given as an infinite series summed over the complete set of modes that can beo
set up in the anode-cathode interaction space. Hence pS(w) must be expressed as a

doubly infinite sum containing all the cross-product terms. However pS(w) will contain

only the squared terms, as all the cross-product terms will average to zero and will

be of the form
00

P ( )2 /o E*) E | zom (49)

m=l

This important result, which is proved in Appendix II of Section III, states that the out-

put noise power of the magnetron may be regarded as a sum of the noise powers associ-

ated with the individual modes of the magnetron. More specifically we have the following

lemma.

Lemma 1. If the emissivity of the cathode of a cylindrical magnetron be uniform,

the noise power associated with any one mode is statistically independent of the noise

power in any other mode. The total output noise power is equal to the sum of the noise

powers associated with the individual modes. It should be emphasized that this result

is true only when the emissivity is uniform. Where it is not uniform, the modes become

mixed up, and some or all of the cross-product terms are non-zero. It is very doubtful

whether a small asymmetry in the cathode emission would have any appreciable effect

on the output noise power.

From Appendix II we have that P(v), the total noise power dissipated in the N output

loads, is given by

4N A I
P(v) = N P (v) = - P(v)e

Nd I - aa* 7 2 2iYmc 2+ Yms 2)}

o (1 + a)(l+ a*) m=l

2 a

1 ( (50)
iN wd 1-- a (

1-4- c (1 +T )
(which is independent of h since A = 2rrrc h where r is the cathode radius) where Ymc

and Yms are defined by the equationsm s
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Y mcf (r)m I- C cos me exp (-iwt) dt

-co

ms =f (r )m c ] sin mO exp (-iwt) dt (51)

and where (r, 0) are the coordinates, at time t of an electron emitted, at time t=O, from

the point (r c , 0) on the cathode.

On the face of it this is a surprising result. It implies that increasing the length of

the cathode and, consequently, increasing the emitted cathode current will not affect

the noise power, which is certainly not what one would expect by analogy with a conven-

tional tube. The result comes about, of course, because the field produced by the elec-

tron in the slot is inversely proportional to the length of the magnetron axially. The

power flowing into the slot from one electron is inversely proportional to the magnetron

length since it is proportional to the product of field 2 x area of slot face. The total

noise power, since it is the product of the power produced by one electron and the total

emission current, is independent of the magnetron length.

Inspection shows that Y and Y are functions only of the orbit followed by the
mc ms

electron. To complete our analysis it is necessary only to find a which, as we stated

above, following Eq. 26, is determined by the boundary conditions at the closed end of

the slot. We have assumed (paragraph 3, page 14) that the termination of the closed

end of the slot is purely resistive, equal to Rt for example. If impedance be defined as

the ratio (Ey/Hz), we have

E A

t H
Hz x=L

where L is the length of the slot. From Eq. 26 this gives us

-- a icoL
K exp (-i ) a exp ( --

Rt = c o
t o exp ( L)+ a exp (- )

where = Zo = 377 in the characteristic impedance of free space. Solving for a

we get

Z o - Rt - 2iwL
a z Rt exp (-i---L ) 

But Rt is not itself a measurable quantity. The quantity that we should prefer to

use is Qm' the Q of the magnetron measured at the first resonance associated with the
th

m mode. As is well known, the output admittance of a magnetron in the neighborhood

of resonance is very closely that of a parallel damped tuned circuit, the inverse frac-

tional half power bandwidth of which is equal to Qm. It is shown in Appendix III that
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Z
o r (52)

Qm R 4t

and that for frequencies in the neighborhood of vom, the first resonance associated with
the mth mode, the total noise power delivered to the loads is of the form

ZNd zo4 Qm 2 2 2 Ymc I Yms I 2 dv
P(v)dv 2eIA Tr (M) rm

m=1 ra V V 2

+ Q 2O m

(53)

In practice, if we are measuring the noise power in the neighborhood of the resonant

frequency vom, only this term in the infinite series of Eq. 42 will be important and we

will have

Nd 4 Qm ,242 2 IYmI± Im 12 dvNd m )c s dv
c 2h o iT~ m 22

(54)
while

P(v) = 2eA Nd 4 m 22 Ymc 12+ yms' 2P(v) Om c 2h Z -r 2
a

In arriving at this result it was assumed that all the noise power was dissipated in

the external load, and that there were no losses to the walls. This will not in general

be the case; the total Q of the output circuit is composed partly of QL the external Q,

and partly of Qom the unloaded magnetron Q, where

QL Qom

om L

and the fraction of the total power dissipated in the load itself will be

+om
Qom + QL

aQm = q~om + QL
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where Q is the total and QL the external Q.

A measure of the "noisiness" of the magnetron can be obtained by comparing

P(vom)dv, the total noise power delivered to the load, with kT rdv, the noise power

generated in the load by thermal agitation. The ratio p of these two quantities is given

by
P(v )_2eIA 2 2 2 mc + ms Q

P om c_ 4 zQm Nd 2 2 s(56)
kT kT o h m2 om mr · r a

where e is the electronic charge N is the number of slots

k is Boltzmann's constant d is the width of a slot

Tr is the room temperature m is the number of the mode

r is the magnetron anode radiusZ is 3772 the impedance of free a
space w is the angular resonant frequency

Qm is the total magnetron Q h is the magnetron length.

QL is the external Q

E. Equivalent Noise Circuit. In this section we shall set up an equivalent noise

circuit for the temperature limited magnetron. It should be emphasized that this can

often be done in a number of ways, and that the value of such a circuit is purely empiri-

cal; it does not necessarily have any significance.

If impedance is defined as the ratio Ey/Hz , the input impedance to the sth slot can

be written

ZI = Zo a) = RI + iXI (57)

where R and X are real, from Eq. 26 with x equal to zero. Taking real and imaginary

parts of ZI we have
1- aa*R Z a(58)

RI °0 (1 + a)(l + a*)

X =Z a*- a (59)I ° (1+ )( + a*)

The form of these expressions and the fact that in the symmetrically loaded magnetron

the N slots are effectively in parallel suggests that we look for an equivalent circuit

of the form shown in Fig. 3 where the noise current generator is in parallel with an

admittance iYs , representing the admittance of the cathode-anode interaction space, and

N impedances each equal to the input impedance of a slot.

If the circuit is to be of any real value it must be possible to find is(v) and iYs(v)

independent of a (i.e. independent of the magnetron load) such that the total power

delivered to the N loads is as given by Eq. 50. We shall show that this is possible if

we make one additional restriction.



By inspection of Fig. 3 we see that the total power

delivered to the loads is
2

Ni (v) RI
5 I dv 

iYs(R + i XI)
N 1 + NN

(60)

Fig. 3

Equivalent circuit for noise
in a single mode of a tempera-
ture limited magnetron (only
two of the N slot circuits are
marked).

Using Eqs. 57 and 58 we see that Eq. 60 can be put

in the form

is(v) -aa* Z o
P'() -N iY dv .

(1+ a)(l + a*) 1 + s o 1 a+ N 1 +a

Reference to Eq. 50 shows that P' (v) is identical with the output

with the mth mode for all a if we take

-N Z od 1
Ys = z
s4mro c Z

(61)

noise power associated

(62)

2 N2 d 2 22 I c 12+ IY 12
is(v) = 2eAI N- ( 2 ) Z rmc ms

a

(63)

The nature of the restriction mentioned above now becomes clear. Y is itself a func-
s

tion of m so that our equivalent circuit cannot be adopted to yield a representation for

the total output noise of the magnetron; a separate circuit is needed for the noise associ-

ated with each mode. This is not a very serious limitation. In most cases we are

interested only in the noise power associated with a given mode, and in the general case

all that we have to do is to calculate the output noise power associated with each mode

separately, and sum over all the modes to find the total output noise power. With the

aid of the steady state theory for the magnetron given in Technical Report No. 118 we

can obtain numerical estimates for the shot noise power delivered to the load of a magne-

tron, which we can compare with experiment.

APPENDIX I.

The Fourier Transforms of the Electromagnetic Field Components Associated with

the Green' s Function Potentials. The fields associated with the Green' s potentials of

Eq. 29 are

E = - grad = - r - r'cos (- ')
E =- g rad ~=[o r2 + r' 2 - 2rr' cos (0- 0' )

-e r' sin (0- ')

Eo r + r'2 - 2rr' cos(0- O')

B = curl A = 0, 0, - e r' r sin (0- ') + r ' r' - r cos (0- 0')] ]

I- 0r 2 ,2L-~~~ ~r + r - 2rr' cos (-- 0')
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Let us utilize the identity

[r 2 + r 2rr' cos(O O' - = (r 2 _ r,2)-1 [
00

1 + 2 rm

m=l

co

-1 m
= (rZ _ r'.2) 1 + 2 r )

m=l
m=l

cos m(O - ') ]
cos m(O - ')

and for the moment, confine attention to the region r > r'. The fields in the region

r' > r can be written by interchanging r and r', and we have

-er' sin(0 - 0t)

E (r 2 - r1 2 )

00

--e
Eor 0 r

m=o

1 =l

m=l

r m
2(r)r

cos mO' sin mO -

cos m(e - ')

r m

(r)

I
sin m0' cos

E rr'
H (t) =

z r
E G(t) + e >' (r) m

m=o

cos m(e - ')

=- e sin mO
m

rm=lm=l

L(r )m r' cos mO'- (r)m 6' sin mO'

cos MO mm-1 + 

r r sn O' (rI)m Co mOl

sin mO d
=-e m dt

m=1 r

L (r)m cos mE' cos cos m d r)m
m rm dt]1

We must now take the Fourier transforms of these fields where F(iw), the Fourier

transform of f(t), is defined by the reciprocal set of relations

F(iw) = f(t) e- iwt dt

f(t) = 1
21T )

If

Fmc(io )
Inc~ _

) F(iw) e iw tdw

-Co

(r')m cos mO' exp-iwt dt

-27-

r> r'

r' >r

G
0

mO

sin me'l
m



Fms(iw) = (r)m
-o-

sin m0' exp (-iot) dt

and

EG(iW) = E G(t) e- i ° t dt
-00

co

HG(iw) = HG(t) eiat dt
z z

then

GE i -e 2 Fmc(i) sin mO
E (iw) =e r e 

m r
m=o

Remembering that
f/t Wf hlin-

F s(iw) cos meO
r>r' 

m
r

the Fourier transform of df/dt, is iw times the Fourier transform of

G(iw) ei Fm ) sin mO
z m 

m=l 1

F (iwc) cos mOms r>r'.
m

r l >r
In the region r < r' we have

EG (io) = - hr Gmc(i) sin me - r m G (i)

m=o

o 0

HG(iw) = ei imGm(iw) sin mO-r G (i )
z m ms

m=l

where

Gmc(iw)=

m(i =

(r')-m cos me'

(r' )-m sin me'

exp - iwt dt

exp -iot dt .

These results are quoted in Eqs. 30, 31 and 32.

APPENDIX II

In this appendix we shall show that p(w), as defined by Eq.48, is of the general form

of Eq. 49 where H s is given by Eq. 39.o
In order to simplify the arithmetic let us confine attention to the power delivered to

the slot for which s = 0. This choice obviously involves no loss of generality. By

inspection of Eq. 39 we see that

-28-

cos mO

cos mO]

r< r'

r< r'

00

4/

00

-
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H° =H
o o

0,

= a X

m=l

where the a m are coefficients that do not depend on o, the initial angular coordinates

of the electron.

If (r, 0) be the coordinates, at time t, of an electron emitted at time t = O, at

(r c , o), and if (r' 0') be the coordinates of an electron emitted at time t = 0 at (rc, ),

then

r' = r,

so that

Xms = (r) m

-co

r2m
- ( r)1

0' = 0+0
O

sin m 0' exp (-iwt) dt

osin m= sin mO0 (r)m
_00

+ cos mO
o

Now

(r)m
J o [

o0

IHH I =

m=

2m

1-(r ) sin mO exp (-iwt) dt .
r

Io co

a X a X*
, m m n n
1 n=l

so that

I|Hi2 =>a a* X X* + 2 >ao m m ms ms n
m=l n/m m=l

pS(o) = hdp 
140
E

0

J(1- aa*) or

(I-C o*

a* X* Xm ms ns

I S )

2rr o

rC
1 ( r) ]

r 2L - ]
cos mO exp (- iwt) dt

sin mO exp (- iwct) dt
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Hence if

IYmcI= (r)m

I (rm)
co

2M~cs eep(-o)dr



oo

Za a *(sinm Y
L m n o mc

m=l
+ cos m Y )o ms

(sin nO Y* + cos nO Y* )]o nc o ns

Now

sin m0O cos nO _ O
O O 

,2rr

cos mO cos nO = 2
0 0 2rr

0

p (w) -= 2 (1 -aa*)2
v O

2rr

Co

sin mO sin nO do = 6n
0 0 0 2 imn

m=l
m m (mc yms 2 )

which is of the form of Eq. 49.

Substituting for pO(w) in Eq. 44 and using Eq. 41 to yield an expression for am, we

have

P(v) = N PS(v) =
4NA I

e pS (w) = ZeIcA N2
o

E
0

1 - aa *
(1 + a)(1 + a'9*)

2
2 (L Y *mc1j I

2mr
a

/
1

iN cod (1 -a 
-- - c 1+)

21

APPENDIX III

In this Appendix we will show that, in the neighborhood of the m mode resonance

frequency vom, Eq. 50 is equivalent to Eq. 53. By comparison of these two equations

we see that we must prove

0o 1 - aa* 
E o (1 + a)(1 + a*) 1

1
iN od (1- a)

-4mi c 1 + a

2} 14Qm

'o r _1

for v v = ( om/2W).
om om

Following Eq. 57, we may write

vomA

(A-l)

(A-2)
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pO() =dh (1 - aa*)
Eo0

and

Hence

2 rr i 2·ri ,~

ill
W I

Y·s I ?-
I

I

Om

s 1 - C

z I = z 0(I+ ) =R I i X



where R I and XI are given by Eqs. 58 and 59. Accordingly we see that the left hand

side of Eq. A-1 is equal to

I

I

2
1 (A-3)

iN w~d ZI
4m-r c Z

and will have a resonance when

N + d XI
4mr- c Z

o

and be equal to

(A-4)

2
1

I c
Z 4mwr

o

(A-5)0

Our first task is to obtain an explicit expression for the resonant frequency from Eq. A-4.

From Eq. 59 we may eliminate XI and obtain

4mr +

N (womd
c

1 a*-a

r (1 + Ca)(l + a*)
· (A-6)

We know that

Zo - Rt 2iwL
- Z +Rt exp (- c )

and if we let Z/Rt = q >> 1, we have

a*-- a
(1 + at)(l + a*) 

Zi sin (Z2L) (q - 1
c q +

1 + ( - ) + 2( - ) os wL
q+1 q-I1 c

(q - l)tan (TL)

q2 +tan Z (L)
q (-)~~

Accordingly the resonant frequency is given by

4m -+
co d

N( om
\\c]/

(q _ 1) tan ( L)- o

+ tan2

It is usually the case that

2 4mwr
q >> v by

N om

in which case the resonant frequency is given by
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(A-7)

(A-8)

(A-9)

(A-10)

RI



N ·( ocd )(A-ll)tan(4L( A- 4- I)
N o

Now 4ma/N(w d/c ) >> 1 so that the lowest resonance angular frequency is given by

L
c T 2 (A-12)

an approximation that is accurate enough for our present purposes.

To find

RIZ * (A-13)
I =z°O (1 + a)(l + a*)

in terms of q at resonance we substitute in Eq. A-13 from Eq. A-7 and obtain

2 om

q + tan2( om )]
q 2 + tan 2 Om

L tan (A - 14)

since

2 4mr q 

At resonance, therefore, the left hand side of Eq. A- is, given by Eq. A-5, is equal to

- m i tan · (A-15)
N Om

It remains to express q in terms of the bandwidth and hence of the magnetron Q, QM

In the neighborhood of the resonance frequency the output impedance of the magnetron

is effectively that of a single tuned circuit. The frequency'at which the square of the

absolute value of this impedance is one-half the value at resonance is given, from Eq.

A-3, by the equation

i 4mwf wOmL

N omc /
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Let this frequency be written as

v + Av v= +
om - om- 2w

(A- 17)

so that 2v is the bandwidth of the output impedance at the half power points.

XI Z t a n = Z tan (wo + A) LI 0 c=o om- c

z [a Z an( c ) + tan -cL0c - ( + tan 2 OmL)]c

AwL tan Lom 1tan c . tan << 1

so that, as

RI 2 Oqm 
RI q tan c

zo aoL- Z tan
q o c

AoL
0 c o

ZAw L2Aom om
i 2com

But from Eq. A-12)

o) L
om ~r

c 2

and

2Aw

om

Hence

2Av 1

om Qm

1
q

- , and
m

as stated in Eq. 52.

We also have the left hand side of Eq. A-1 identically

V Vom

4 o
Q Rt

equal to the right hand side for

IV. EXPERIMENTAL RESULTS AND POSSIBLE MECHANISMS

FOR SPACE CHARGE NOISE AMPLIFICATION

A. Experimental Results and Excess Noise. To check the shot noise theory

developed in the first part of this paper it is obviously desirable to measure the noise

power produced by a low current density temperature limited magnetron. At the time

of writing a suitable tube is under construction but no experimental data are available.

Instead we shall use some results, contained in unpublished work by V. Mayper, which

-33-
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were obtained with a magnetron, Type QK61, operated in a space charge limited, high

current density condition, with fixed magnetic field of 0.17 weber/m and variable plate

voltage. In Fig. 4 we have plotted the logarithm of the ratio of the observed output noise

power developed at the resonance associated

with the 7-mode to the thermal noise power

generated in the load as a function of a , the

anode-cathode potential. This curve

possesses two very striking features: the

enormous noise power generated at the

higher plate voltages, and the very rapid

increased noise power with plate voltage.

Neither of these phenomena can be explained

by the shot noise alone, as we shall now

show.

- 400 500 600 700

. IN VOLTS

Fi. 4 Noise Power measured in 16-slot
800 magnetron as function of plate

voltage for B = 0.17 weber/m 2 .

From Eq. 56 the shot noise power delivered to an external load is given by

P(v) 2eAIs Nd 2 4Q 2 2 |Y12 + ly 1s 2

kT kT 2h m) Z w 2mmL o r
a

where

IY Mc2 

I Yms 1 = I

cos mO (r) m

sin mO (r)m

r 2m 2
1- ( r j exp (- iwt) dt

rc 2m

-( (c) exp (- iwt) dt

(64)

(65)

From the data of Fig. 1

Nd = 0.006 m

h = 0.01m

r = 1.75 mmc

r = 2.8 mm
a
m= 8

A= 1.1 cm2

The other quantities depend on the external fields.
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Let us consider the case where Oa = 750 volts, B = 0.17 weber/m . Under these

conditions it was found experimentally that

Q = 400 QL = 5 0 0 (67)

The circulating current density I s was calculated from the steady state magnetron

theory of R.L.E. Technical Report No. 118. We have that

Is = 5.1 10 amp/m. (68)

We also have that

o-= 5.5 and K = 3000 (69)

where a- and K are parameters of the steady state space charge distribution and that

I = 0.295 mm where r + I is the radius of the edge of the space charge cloud.c
To obtain a numerical expression for the shot noise power it is necessary to evaluate

I Ymc I + Yms 2 . The exact calculation of this quantity, which is determined by the

electron' s orbit, can only be carried out numerically. However it is easy to obtain an

upper limit to this quantity and it is shown in the appendix of Technical Report No. 18

that

IYMcI MsI <T 1- 0 (70)
2m r + (70)
a

where T is the total transit time. Hence

kT kT 2h Tm) m r I moT ... +
r r QL c

and substituting the numerical values given above and calculating T, we have

10 log1 0 kr < 10 log1 0 1.27 10 = 57 db (72)

where T is taken as 290 ° K.r
Now from Fig. 4 we see that the measured noise power produced when the plate

voltage is 750 volts is 78 db above the thermal noise which is 21 db greater than the

maximum possible shot noise.

If we use the approximate expression for IYm 1 2 + Y s 2 which is given in the

appendix of Technical Report No. 118, we have

P(k(°)010 log1 0 rc+0.351 1610 log10 57 -10 loglo r + i (73)

48 db (74)
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so that, with the maximum plate voltage we see that the measured noise is about 30 db

greater than the theoretical shot noise.

It is even simpler to show that the variation of noise output power with plate voltage

is inexplicable on the assumption that only shot noise is present. In Eq. 64 only two of

the terms depend on the plate voltage: the dynamic Q and the orbit dependent term

IYmc 2 + YmsI 2

2m
r

a

The experimental variation of Q with plate voltage for the particular external fields

given above is shown in Fig. 10 of Technical Report No. 118. Over most of the voltage

range Q is approximately equal to 300 although it does drop sharply to below 100 when the

plate voltage is in the immediate neighborhood of 300 volts.

The change with plate voltage of the orbit dependent term is more complex but,

except for voltages so low that the electrons never leave the neighborhood of the cathode,

an upper limit to this change will be given by taking the term r in Eq. 65 equal to r m

c
Accordingly the maximum change in shot noise power due to plate voltage is of the order

of

()2 (r +I 6
10 log 0 m c13 db

min rc

assuming that Qmax is 400 and Qmin is 300.

Since the observed change is of the order of 60 db it is obvious that the experimental

data cannot be explained by the shot noise alone.

In Technical Reports No. 117 and 118 we shall try to set up a theory to explain the

above discrepancies, which will also throw light on the excess anode current and moding

properties of the magnetron.

APPENDIX I.

In this appendix we have to obtain an approximate expression for

IYmc 2 + IYmsI (A-l)
Zm

r

where Ymc 2 and Yms 2 are given by Eq. 65 and both r and 0 are complex functions

of time given by

0 = dt = -dt -( 2 )dt (A-2)
r
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r

dr

t=Irt=}Fr; Kr-r c)(l r-r)c | 2kT K

where r I = r + I is the maximum distance reached by the electron.
c

Since I Ym2 and I Yms 12 are both proportional to

r 1- () 2r2m I r Zm]

we shall obtain an upper limit to the value of

I Ymc I 2 + IYms

2m
ra

a

if we suppose that the electron travels at its maximum

the total transit time. This suggests that we evaluate

[Ymc 2 + IYms 2
2m

r
a

for the case

have in this

radius r for a time equal to T

where the electron moves at constant radius r for a certain time T . We

case

IY 12 + ly s 2
mc ms

2m
r
a

m -rc ] cos mO t exp (--iwt) dt +

) [ ( 2 O ep ( To)

ar oa r~l c~trrep 2m L iO

sin T)

o- meOL 0~~

/r 2m

+ me 0
m 00 T sin Z To

exp 2 i exp -

o0

2

T

sin mO t exp (-iwt

sin -- To/
-- exp-

W + mE)0

imO T

2

2

+

I
(A-5)

-37-

(A-3)

(A-4)

__ I_

2
r 

I 
0~]



X + mO
For small 2 TO this gives us

Ym12 +lyam 12 (roym ] 1 (A-6)
ra

an upper limit to

YmCi2 + Yms 2
2m

r
a

is obtained by taking r = r and To = T which yields us the inequality in Eq. 67 given in

the main body of the text.

For normal values of rl, the term

r 2m2

r 1

is nearly equal to one. We might expect therefore to obtain a lower limit to the value of

I Ymc 12 + lyMSl 2
ms2m

r
a

by taking r equal to rc and putting [1- (rc/rl)2m12 equal to unity.

Perhaps a better approximation would result if we took r and 0 equal to their

average values. Now the average value of r is

r=r + 2 x dt = r + 0.351 (A-7)
c Tc

so that we may take

r = rc + 0. 35 (rl rc) (A-8)

In this case

MO m 0 F(r 0 A lmc r- (A-9)or L ,iz 0.7

In the body of the text we are considering the case where

11.3 100 109-3
- 1 = 2.98 10, = 6rr 0, r 1 -rc = 0.295 10 3

O

so that, in this case,

o o
T <1 2 T 2n2 o 2 o

and we have
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2 w -mO 2 w + mo T

sin 2 T sin 2 T o)

2 + a (A- 10)
(W -moo) ( + mo) 2

Approximately therefore

Y 2+ IY 12 \2m26

Zm r Ll2 21 r T(r .35 )
r \ Cam ~ ray 1 _ rlT2 r+ Sp *b (A-ll)

This is a reasonable approximation for the particular case considered in the text.

For other numerical cases it is necessary to adopt different approximation, or rely on

numerical integration.
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